

# **Basic Pharmacology of DMSA, DMPS and Ca-EDTA**

David Quig, PhD Doctor's Data, Inc.

## **Basic Toxicology**

Exposure → Assimilation → Retention → Toxicity
 Exposure ≠ Toxicity

## "Low-level" Exposure & Retention

- Exposure→Assimilation→ Retention→Toxicity
- NOT generally accepted as requiring treatment

"Sub clinical metal toxicity"

#### **Chronic Metal Toxicity**

"Sub-clinical" metal toxicity = sub-threshold

 For a given *individual*, toxicity is exhibited when the level of net retention exceeds physiological tolerance.

#### **Net Retention**

- Determined by the relative rates of *assimilation* and *excretion*.
- Efficiency of excretion is highly variable and determined by protein expression (MT, GSH), nutritional status, antibiotic use, life style, and total toxic load

#### **Assessment of Exposure: Blood**

- Recent or ongoing exposure
- Kinetic models; blood pool shortest T<sup>1/2</sup>
- Relationship between blood Pb and post-EDTA urinary Pb is nonlinear: arithmetic 1 in blood Pb are associated with EXPONENTIAL 1 in urinary lead

#### Unprovoked Urine: As <u>Exposure</u>

- Organic As rapidly excreted w/in 48 hrs. of consumption of shellfish (UAs up to 1500 µg/gm, normally <130)</li>
- PREVENT ALARMISM !

Do **pre-** and **post** urinalysis initially, and abstain from fish and shellfish one week prior to provocative challenges

#### **Provoked Urinary Metals.gov**

"The measurement of lead excreted in urine following an injection of the chelating agent, calcium disodium EDTA (*EDTA provocation*) has been used to detect elevated body burden of lead in adults (2,3,4,5) and children (6,7), and **is considered to be a reliable measure of the potentially toxic fraction of the lead body burden** (8)."

www.atsdr.cdc.gov/toxprofiles/tp13.html#

#### **Assessment of Metal Retention!**

Pre- and Post provocation urinary metals

 The precedent has been set, assess the net retention of other metals using EDTA, DMPS or DMSA

### **Pharmacological Detoxification**

- Primarily extracellular, aqueous compartment
- Do <u>NOT</u> appreciably cross a healthy BBB !
- Rx Pull
- Concentration gradient
- Intracellular detoxification- Push (rGSH)
- <u>Time</u> for re-equilibration

### **Legal Status of Agents**

<u>Ca-Na<sub>2</sub>-EDTA</u>: FDA approved in the 50s (Pb)
 Polyamine carboxylic acid (6 unpaired electrons)

• **<u>DMPS</u>**: NOT FDA approved H H H H  $H - C - C - C - SO_3^-, Na^+$  S S HH H

(Informed consent!)

#### Legal Status : DMSA

- Chemet<sup>™</sup>: FDA approved for Pb
   "poisoning" in children in 1990
  - 2,3-meso-dimercapto-succinic acid

## EDTA

- Slow iv drip Na<sub>2</sub>-EDTA for CVD (3 hrs.)
   NEVER PUSH Na<sub>2</sub>- EDTA
- Introduction of <u>Ca-Na<sub>2</sub>-EDTA</u> slow push iv
- No biotransformation in vivo
- $T^{1/2}$  about 30-45 minutes

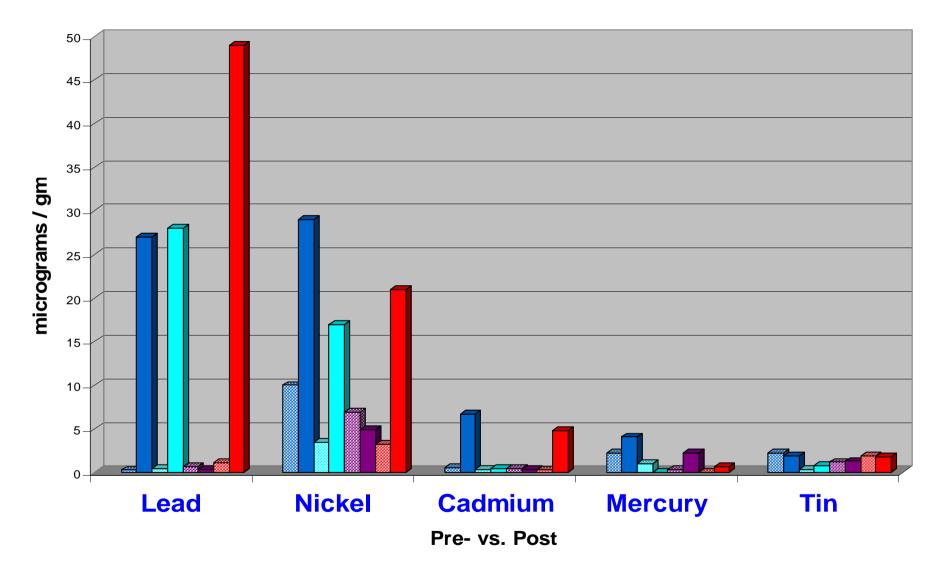
## **Ca-Na<sub>2</sub>-EDTA is Hypertonic**

- 3 gm /10-30 ml; 800-2,400 (mOsm)
- 1-7X dilution (sterile H<sub>2</sub>O, saline), slow push (10 min.) or fast drip (15-30 min.)
- 25-50 mg/kg (3 gm max), half dose initially
- 6 hour urine collection
- Potential hypotension, hypoglycemia

Hydration, snack, reclining chair

## Ca-Na<sub>2</sub>-EDTA (cont'd)

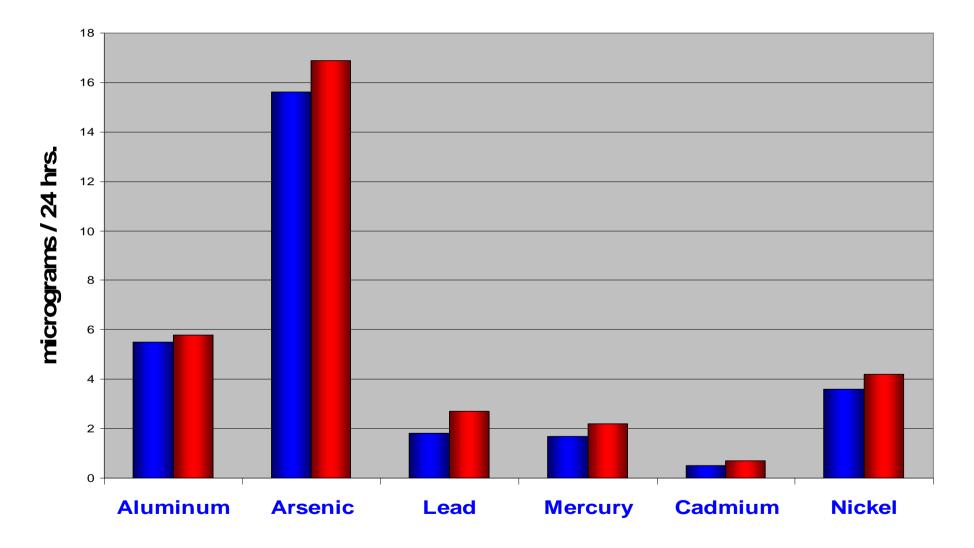
- <u>Oral</u>: poorly absorbed, only ~ 5-10 % Not appropriate for challenge test
- <u>Suppositories</u>
   Not appropriate for challenge test
   Appear to effective for long-term detoxification of lead


# Urinary Metals After Intravenous Ca-Na<sub>2</sub>-EDTA

|           | Increase*     |
|-----------|---------------|
| Lead      | <b>147-X</b>  |
| Zn        | <b>32-X</b>   |
| Manganese | 15-X          |
| Iron      | 7.4-X         |
| Cadmium   | <b>7-X</b>    |
| Antimony  | <b>4.4-</b> X |

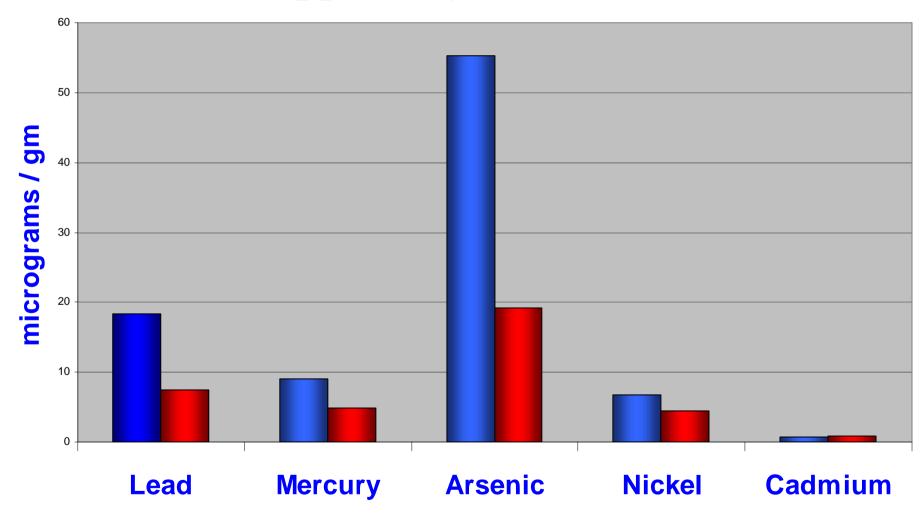


Quig, Filidei, Whitaker (2002)


#### **IV** Ca-Na<sub>2</sub>-EDTA Provocations: ASD



n = 4, ages 3-12, 750-1,500 mg, 6 hr. collections


Usman and Quig (2006)

#### **Ca-EDTA** <u>Suppositories</u>: Pre- vs. Post



**n=35 adults, 750 mg** 

#### Post DMSA Before and After Ca-EDTA Suppository Treatment

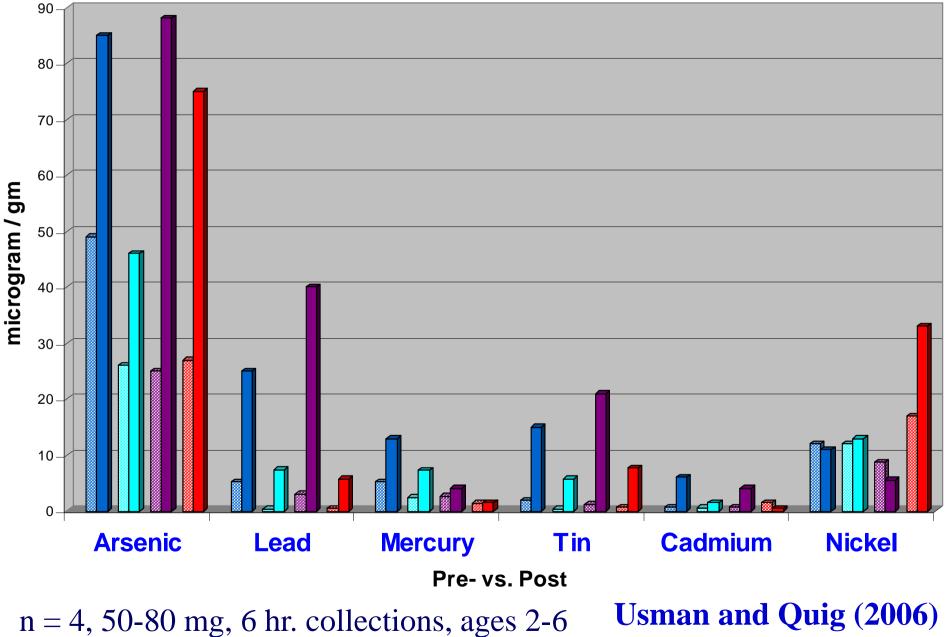


n=35, 90 days, 750 mg/night



- Official drug in Soviet Union since 1958, registered with German health authorities (Dimaval®)
- T<sup>1/2</sup> oral ~ 9 hr. (~ <u>50 % absorbed</u>)
- $T^{1/2}$  iv < 1 hr.

#### Urinary Mercury Before and After DMPS Challenge


μg Hg / 6h

|                          | <b><u>Before</u></b> | <u>After</u> |
|--------------------------|----------------------|--------------|
| <b>Dental techs (10)</b> | 5 ± 1                | 424 ± 85     |
| Dentists (5)             | $3 \pm 1$            | $162 \pm 52$ |
| <b>Controls (13)</b>     | $1 \pm 0.2$          | $27 \pm 3$   |

(300 mg DMPS oral)

J Pharmacol Exp Ther (1995)<u>272</u>:264-74

#### **IV DMPS Provocations: ASD**



#### **DMPS:** Possible Side Effects

- Severe reaction (rare): mucocutaneous eruptions
- Chills, fever, itching, skin rash --presumably mild allergic reactions
- Elevated transaminase levels (ALT)
- Hypotension, nausea, dizziness and weakness (usually i.v.), depression, "brain fog," fatigue
- Cu, Zn and Mo deficiencies
- NO DOCUMENTED Stevens-Johnson Syndrome (V. Aposhian, 2004)

#### **DMSA General**

- Does NOT cross healthy BBB
- Does NOT <sup>↑</sup> brain Pb or Hg levels
- Increases urinary Pb, Hg and As, but **NOT** aluminum or uranium

Toxicol(1995)<u>97</u>:23-38 Arch. Toxicol.(2002)<u>76</u>:437-31 Toxicol(1989)<u>54</u>:323-33 Toxicol (2002)<u>177</u>:186-97 Envir. Toxicol.(2001)<u>9</u>:173-84 Toxicol Appl Pharm(1999)<u>161</u>:283-93

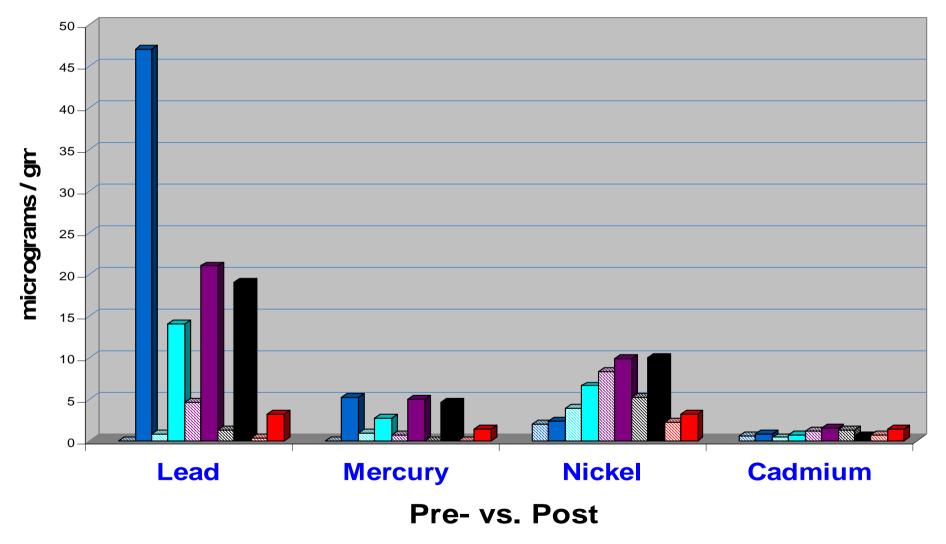
#### **DMSA and Brain Metals**

#### **DMSA decreased brain Pb, Hg in:**

- Animals *pre-loaded* with Hg or Pb
- Rats pre-loaded or ongoing Pb exposure Normalized CNS levels of GFAP Normalized behavioral hyperactivity

Toxicol <u>89</u> (1994) Toxicol Appl Pharm <u>133</u> (1995) Free Radic Biol Med <u>21</u> (1996) Pharm Toxicol <u>80</u> (1997) Chem Res Toxicol <u>1</u> (1996) Toxicol Appl Pharm 144 (1997)

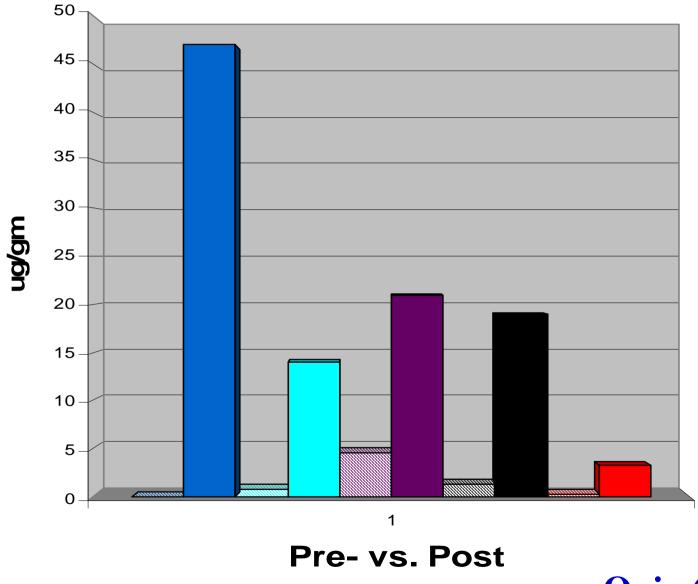
#### **DMSA: Clinical Pharmacology**


- 20-25% absorbed (orally)
- Peak plasma ~ 3 hrs., rate U excretion ~ 4 hrs.
- Urinary excretion: 90% as mixed disulfides with 2 cysteines (1:2)

J Nutr Envir Med(1998)<u>8</u>:219-31 PDR(2005) Toxicol(1995)<u>97</u>:23-38 J Pharmacol Exp Therap(1993)<u>267</u>:12-21

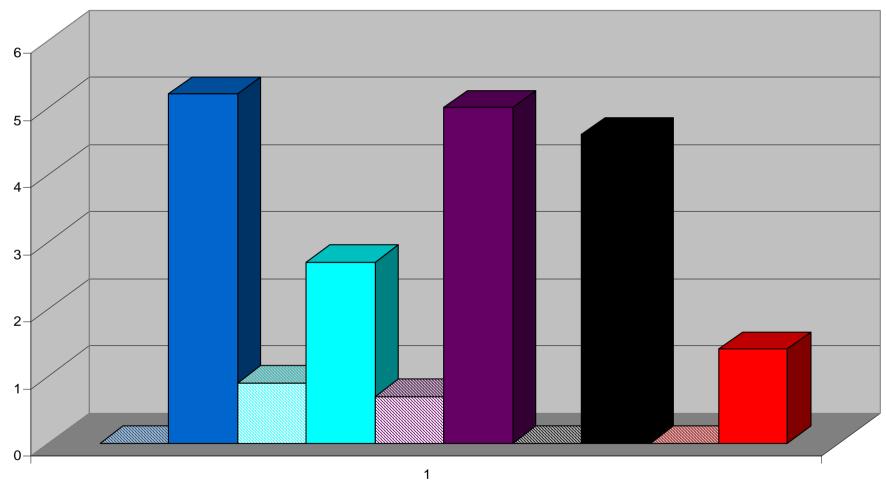
### **Dysbiosis and Sulfur Compounds**

- N-AC, ALA and DMSA exacerbate GI symptoms, and apparently the growth of undesirable bacteria/yeast.
- Urease+ bacteria produce H<sub>2</sub>S and NH<sub>4</sub> from cysteine (N-AC).
- Clean up GI tract **BEFORE** starting metal detoxification with oral SH- compounds


#### **DMSA Suppository Challenge**



n = 5, 20 mg/kg, 6 hr collections, age 3-4 yrs.


**Quig** (2006)

#### **DMSA SUPPOSITORY: LEAD**



**Quig (2006)** 

#### **DMSA SUPPOSITORY: MERCURY**



Pre- vs. Post

**Quig (2006)** 

#### **DMSA: Potential Side Effects (oral)**

- <u>Potential side effects listed in PDR</u>: mucocutaneous reactions, nausea, fatigue, 1 liver enzymes, leucopoenia, neutropenia, thrombocytopenia
- Clinically observed side effects (transient): Dizziness, weakness, G.I. distress (gas, loose stools, bloating), occasional <sup>↑</sup> ALT

#### **Toxic Metals are Pro-oxidative**

Promote lipid peroxidation
Inhibit antioxidative enzymes SOD, GSH-Px, catalase
Deplete glutathione (rGSH) Direct binding/irreversible excretion Inhibit GSH reductase/GSH S-transferase

#### **Antioxidant Effects of Agents**

- EDTA, DMPS, and DMSA are free radical scavengers
- $\downarrow$  oxidative stress
- EDTA, DMPS and DMSA <u>increase hepatic GSH</u> in lead-exposed animals

J Biochem Mol Toxicol(2004)<u>18:</u>221 Chem Biol Interact(2003)<u>145</u>:267 Comp Biochem Physiol C Toxicol Pharmacol(2003)<u>134</u>:319 Dimaval Scientific Monograph(Heyltech)1997

## Antioxidants Are a Must: Cellular Protection

- DMSA, EDTA, ALA, N-AC, E, C, melatonin and taurine improve redox state of cells, ↑ GSH and ↓ biomarkers of oxidative damage
- Greater urinary metal excretion with DMSA PLUS antioxidants

Chem Biol Interact(2003)<u>145</u>:267 Arch Toxicol(2002)<u>76</u>:437 Toxicology(2002)<u>177</u>:186 Envir Toxicol.(2001)<u>9</u>:173 Arch Envir Contam Toxicol(2001)<u>41</u>:397

# **Glycine : Assisting Agent for Challenges**

- 40 mg/kg glycine orally about 2 hrs. before a challenge
- Use in CONJUNCTION with EDTA, DMSA, or DMPS
- Not to be used alone
- Contraindication: hyperammonemia

Envir Hlth Perspect (1986)<u>65</u>:363-411 Pangborn(1995), DDI/Bionostics Quig, Townsend Letter, June 2007

#### **Take Home Messages**

- Apply pharmacokinetic **facts**.
- IV Ca-EDTA is very effective for Pb, Cd and Al.
- Rectal Ca-EDTA appears effective over time therapeutically.
- **Rectal DMSA** is effective for **challenges** and **detox**.
- IV and oral DMPS is very effective; need **pre-/post** rectal DMPS data.

#### **Take Home Messages**

- Ca-EDTA, DMSA and DMPS have dual actions: antioxidative (immediate), and metal detoxification
- The agents work best when combined with natural antioxidants
- DMSA is **NOT** a nutritional supplement

# Equilibrium Constants for DMPS-Metal<br/>Complexes $logK_1$ $logK_2$ $Hg^{2+}$ 2736 $Ag^{2+}$ 2535

- CH<sub>3</sub>-Hg<sup>1+</sup> 21 31
- Cu<sup>2+</sup> 18 29
- Cd<sup>2+</sup> 18 26
- Pb<sup>2+</sup> 17 25

Zn<sup>2+</sup> 15 25 Heyltex Corp

## **EDTA Stability Constants**

|                                                      | <u>Log K</u> |
|------------------------------------------------------|--------------|
| Pb <sup>2+</sup>                                     | 18.4         |
| Cu <sup>2+</sup> , Ni <sup>2+</sup>                  | 18.3         |
| Cd <sup>2+</sup> ,Zn <sup>2+</sup> ,Co <sup>2+</sup> | 16.1         |
| Fe <sup>2+</sup>                                     | 14.4         |
| $Mn^{2+}$                                            | 13.4         |
| Ca <sup>2+</sup>                                     | 10.6         |
| Sr <sup>2+</sup>                                     | 8.6          |

Chemistry of Metal Chelate Compounds (1978)

| <u>Metal</u> | 1 <sup>st</sup> Choice | 2 <sup>nd</sup> Choice |
|--------------|------------------------|------------------------|
| Inorg. Hg    | DMPS                   | DMSA                   |
| Org. Hg      | DMSA/ DMPS             |                        |
| Pb           | DMSA/EDTA              | DMPS                   |
| As           | DMPS                   | DMSA                   |
| Cd           | EDTA                   | DMPS*                  |
| Sb           | DMPS/DMSA              | EDTA                   |
| Sn           | DMPS,DMSA              | EDTA                   |
| Tl           | Prussian Blue          | DMSA                   |
|              | (K ferric cyanoferrat  | e II)                  |

Toxicol (1995)<u>97</u>:23-38